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The stability of pipe flow when mildly deviating from the developed Poiseuille profile
by a non-axisymmetric azimuthally periodic distortion is examined. The motivation
for this is to consider deviations, the origin of which may be attributed to small-
amplitude disturbances having sinusoidal periodicity along the azimuthal coordinate,
which are known to be the ones most amplified by the transient growth linear
mechanism. A mathematical technique for finding the minimum energy density of
azimuthally periodic deviations triggering exponential instability is presented. The
results show that owing to bifurcations multiple solutions of optimal deviations exist.
As the Reynolds number is increased additional bifurcations appear and create more
distinct solutions. The different solutions correspond to different radial distributions of
the deviations, and at Reynolds numbers of about 2000 they are distributed over less
than a half of the pipe radius. It is found that the dependence of the optimal deviation
velocity leading to instability on the Reynolds number Re is approximately 20/Re.
A comparison to axisymmetric base-flow deviations shows that the minimum energy
required for an azimuthally periodic deviation to trigger instability is almost twice
that for the axisymmetric flow. However, azimuthally periodic deviations, which are
shown to have a streaky pattern, may have a role in the self-sustaining process. They
may be formed as a result of a transient growth amplification of initial streamwise
rolls and can produce, via self-interactions between the resulting growing waves,
patterns of streamwise rolls as well.

1. Introduction
The phenomenon of transition from laminar to turbulent flow in a pipe has been

explored in many studies since the first known experiments by Reynolds (1883).
In his experiments Reynolds observed that transition depends on a dimensionless
quantity Re = 2W̄R/ν (referred to since then as the Reynolds number), based on the
average (bulk) axial velocity W̄ , the pipe radius R and the kinematic viscosity ν. In an
extensive study, Reynolds found that in various tubes having different diameters the
steady motion changed into an unsteady flow, in which eddies could be observed, for
Re above approximately 2000. However, when disturbances were carefully avoided
this transition could be delayed to much higher Re of 12000 to 14000; when the pipe
is smooth and inlet conditions are carefully controlled transition to turbulence can
be delayed to much higher values of the Reynolds number (in an experiment by
Pfeniger 1961, laminar flow has been sustained for Reynolds numbers up to 105).
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According to linear stability analysis, a developed pipe flow is known to be stable to
any kind of infinitesimal disturbance for all Reynolds numbers. This result has been
shown numerically to hold for Reynolds numbers up to 106–107 for a wide range
of axial and azimuthal wavenumbers (Lessen, Sadler & Liu 1968; Salwen, Cotton &
Grosch 1980; Meseguer & Trefethen 2003). In many experiments performed during
the past decades transition to turbulence has been observed at Reynolds numbers
1800 <Re <Reu, where the upper bound value Reu depends on the magnitude of the
disturbance amplitude, naturally initiated or artificially introduced into the flow (e.g.
see Wygnanski & Champagne 1973; Wygnanski, Sokolov & Friedman 1975; Rubin,
Wygnanski & Haritonidis 1980; Darbyshire & Mullin 1995; Eliahou, Tumin &
Wygnanski 1998; Han, Tumin & Wygnanski 2000; Hof, Juel & Mullin 2003).

Since the developed flow in a pipe has been shown to be linearly stable, exploring
weakly nonlinear instabilities has been attempted in a wide variety of studies. For
example, Davey & Nguyen (1971) and later Itoh (1977) considered finite-amplitude
expansions for axisymmetric disturbances which were assumed to be valid in the
Re → ∞ limit. Numerical results obtained by Orszag & Patera (1983) showed
the existence of non-axisymmetric secondary instabilities, where the primary state
consisted of axisymmetric finite-amplitude waves. Smith & Bodonyi (1982) applied a
nonlinear critical layer theory at asymptotically large Reynolds numbers and found
neutral, finite-amplitude disturbances, having a helical structure.

Pipe flow is one example of wall-bounded shear flows in which transition may occur
for Re lower than the critical value predicted by linear stability theory. Other known
examples are plane Couette flow, which has been shown to be linearly stable for any
Reynolds number (Romanov 1973), and plane Poiseuille flow, which has been found
to be linearly unstable only for Re greater than approximately 5800 (Thomas 1953).
In both flows transition has been observed at subcritical Reynolds numbers (e.g.
see the subcritical transition experiments by Tillmark & Alfredsson 1992 for plane
Couette flow and by Patel & Head 1969 for plane Poiseuille flow).

A possible subcritical transition scenario is due to the transient growth mechanism
(see the review paper by Reshotko 2001 and the book by Schmid & Henningson 2001).
Accordingly, small finite initial disturbances may initially be significantly amplified
and trigger nonlinear instabilities, before their decay due to viscous effects. For plane
Poiseuille flow Gustavsson (1991) found that the most amplified disturbances are
streamwise-independent three-dimensional structures. Butler & Farrell (1992) have
applied an optimization procedure for plane Couette and plane Poiseuille flows to
yield the most amplified initial disturbances. They found that the most transiently
amplified disturbances have the structure of streamwise vortices, independent of the
streamwise direction. Optimal transient growth analysis in pipe flows has been carried
out by Bergström (1993) and by Schmid & Henningson (1994) for temporally growing
disturbances, and by Reshotko & Tumin (2001) for spatial disturbances. It has been
shown in the first two studies above that the most amplified initial disturbances have
a helical structure and are independent of the streamwise direction. The last work has
shown similar results; however, in this case the most amplified disturbances have been
found to be stationary. Schmid & Henningson (1994) have also shown that the most
transiently amplified initial disturbances have the structure of two counter-rotating
vortices in the pipe cross-section.

Ben-Dov, Levinski & Cohen (2003) have demonstrated that in a fully developed
pipe flow the time and distance, at which the maximum energy amplification of an
initial disturbance is achieved, are well-predicted analytically by considering only
the pair of least-stable modes. Furthermore, the dependence of the maximum energy
amplification on the Reynolds number matches previous numerical results which were
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based on the analysis of many modes. In the temporal case the predicted amplification
factor agrees well with these numerical results. Moreover, for both temporal and
spatial analysis the initial structure consisting of two counter-rotating vortices has
been shown to be obtained from the two least-stable modes. The induced wall-normal
velocity of the counter-rotating streamwise vortices produces low- and high-speed
streamwise regions, which are commonly termed ‘streaks’ (e.g. see the experiments by
Elofsson & Alfredsson 1998 and by Svizher & Cohen 2006 for plane Poiseuille flow).

The transient growth mechanism, considered in the above-mentioned studies, is
purely linear and is assumed to be followed by a nonlinear stage, leading to transition.
This nonlinear stage has been addressed by Zikanov (1996) for the case of pipe
Poiseuille flow. In that study finite-amplitude disturbances have been introduced into
the flow, and their evolution was traced in two steps. In the first step, using direct
numerical simulations, the initial flow-field included optimal helical initial streamwise
vortices, like the ones found by Bergström (1993) and by Schmid & Henningson (1994)
based on linear theory. The pipe Poiseuille base flow has been thus initially modulated
and for sufficiently strong vortices, streaks appeared after some transient time. In the
second step, the amplified streaks have been used as part of the base flow for linear
stability analysis with respect to secondary disturbances. The analysis revealed that
this modified base flow is unstable with respect to certain three-dimensional modes.
However, the maximum amplification of the modulated base flow and the time at
which it is attained are at least one order of magnitude less than the corresponding
values predicted by the linear transient growth theory. In a complementary numerical
study by Meseguer (2003), the nonlinear evolution of the infinitesimal secondary three-
dimensional modes has been followed, using the same base flow, i.e. pipe Poiseuille
flow together with finite-amplitude streamwise independent perturbations. It has been
shown that throughout this nonlinear stage certain secondary instabilities do not
decay.

Similar transition scenarios have also been examined in plane Couette and
plane Poiseuille flows (e.g. see Gustavsson 1991; Butler & Farrell 1992; Reddy &
Henningson 1993; Henningson, Lundbladh & Johansson 1993). Correspondingly,
the transition consists of two stages. The first stage begins with the formation of
streamwise vortices (approximately aligned with the basic laminar flow) and the
subsequent formation of streamwise streaks of relatively low and high velocity in
the azimuthal (spanwise)-direction. This is a linear stage, governed by the transient
growth (algebraic) mechanism. The second stage is the final evolution of a secondary
instability of oblique modes (i.e. a perturbation which is streamwise dependent). By
examining the linearized wall-normal vorticity equation asymptotically for Re → ∞,
it is evident that the transient growth amplification (in the first stage) of streamwise
modes, having infinitely long streamwise wavelength (∼Re), is proportional to Re over
a time scale of O(Re). In other words, an initial wall-normal velocity perturbation
with an amplitude ε will result in a transient growth amplification of the wall-normal
vorticity η with magnitude of O(εRe) (see the study by Chapman 2002). Hence, for
infinitesimal perturbations, the maximum transient growth amplification will not be
achieved until the perturbation has travelled a distance of O(Re).

Experimentally, however, typical subcritical transition requires much shorter
downstream distances (less than ∼50 pipe diameters or channel widths, e.g. see
Darbyshire & Mullin 1995 or Elofsson & Alfredsson 1998). The long distance (or
time) of order Re required for transient growth of infinitesimal perturbations can
be significantly shortened by increasing the initial amplitude ε. The wall-normal
vorticity equation shows that η ∼ εRe(t/Re), where t denotes the non-dimensional
time (normalized by the pipe centreline axial velocity and the pipe radius). When
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t ∼ Re, a small ε (∼1/Re) can give an O(1) amplification in η. However, the same effect
can be achieved for much shorter times by increasing ε equivalently. This scenario
was recently used by Philip, Svizher & Cohen (2007) to experimentally confirm the
two-stage scaling law of subcritical transition in plane Poiseuille flow, asymptotically
derived by Chapman (2002). Moreover, if the initial perturbation is not infinitesimally
small, a different approach may also explain the subcritical transition over a relatively
short distance. As pointed out by several investigators (e.g. Biau & Bottaro 2004), an
exponential growth of one (or more) mode(s) can still exist in nominally subcritical
conditions when the mean flow is mildly distorted with respect to the canonical
base flow profile. Biau & Bottaro (2004) suggested that such modifications in a
base flow can arise in laboratory experiments when operating in less-than-perfect
conditions, i.e. under the influence of various forcing terms such as wall roughness,
inflow disturbances, pressure gradient fluctuations, vibrations, etc.

The concept of superimposing deviations on a linearly stable base flow has been
introduced by Gill (1965) for viscous shear flows and later by Lerner & Knobloch
(1988) for an inviscid free shear flow. Bottaro, Corbett & Luchini (2003) presented
a variational method to optimize the deviations in parallel shear flows, in order
to find the lowest amplitude deviations resulting in an unstable modified base-flow.
Bottaro et al. (2003) and Biau & Bottaro (2004) have analysed the temporal and
spatial instabilities, respectively, of two-dimensional optimal deviations added to
plane Couette and plane Poiseuille flows. In the latter study the optimal deviations
have been termed ‘minimal defects’. Gavarini, Bottaro & Nieuwstadt (2004) have
used the same method to investigate the spatial instability of pipe flows to optimal
axisymmetric deviations. They have found that unstable modes exist for a very small
deviation magnitude at Reynolds numbers in the range Re = 1000–4000, and that
the instability is essentially governed by an inviscid mechanism (inflection point
instability). More recently, Ben-Dov & Cohen (2007) employed the mathematical
method introduced by Gavarini et al. (2004) and through a careful examination of
the nonlinear features of this problem revealed a ‘critical Reynolds number’ of ∼2000
associated with the bifurcation between two deviation solutions. Below this Re the
minimal deviation is concentrated next to the pipe wall whereas above it the minimal
deviation is around the centre of the pipe. The associated unstable waves of the latter
have wavelengths and time scales which are respectively about 2 times and 3.5 times
shorter than those of the former. As both the length and time scales of any possible
unstable wave solution must be much shorter than the axial length and time scales of
the deviation, these characteristics may supply an explanation for the preference of
the solution, i.e. only if the deviation persists over a sufficiently long time and spatial
extent compared to the respective scales of the unstable waves can the latter grow
and initiate transition.

In the present work we examine the stability of the base-flow profile when it is
mildly deviated from the Poiseuille profile by a non-axisymmetric azimuthally periodic
distortion. The motivation for this is to consider deviations, the origin of which may
be attributed to the transient growth of relatively small disturbances. In other words,
as the structure of the optimal transiently growing initial disturbance varies along the
azimuthal coordinate θ as cos(θ) (e.g. see Bergström 1993), the resulting deviations
are expected to vary periodically with θ as well. Their radial distribution is optimized
to find the lowest amplitude required to trigger instability. Unlike the wake-like
instability described by Waleffe (1997), and considered by Wedin & Kerswell (2004)
for pipe flows, in the present case the instability mechanism is based on an inflection
in the radial direction rather than in the azimuthal (or spanwise in a channel flow)
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coordinate. It is reasonable that at high Reynolds numbers weak streaky structures
(relative to the mean flow) may become unstable, i.e. at high Reynolds numbers the
streaks may not have to reach the order of magnitude of the mean flow in order to
trigger instability.

In the following we find optimal deviations to the pipe Poiseuille flow. Unlike pre-
vious studies mentioned above, in which two-dimensional (axisymmetric) deviations
have been considered, in the present case the deviations are three-dimensional. They
are independent of the streamwise direction but vary along the azimuthal direction.
Thus, they represent a streaky structure in which the radial distribution of the axial
velocity is optimized to have a minimal amplitude, required for the modified base
flow to become linearly unstable. Section 2 presents the governing equations for a
base flow consisting of the Poiseuille pipe flow modified by an azimuthally periodic
deviation. In § 3 the optimization method for azimuthally periodic deviations is
developed. Section 4 presents the results, including a brief overview of axisymmetric
deviations, mainly for comparison with the azimuthally periodic deviation results
presented later, and an analysis of the flow induced by the unstable waves triggered
by the azimuthally periodic deviations. Section 5 is a discussion on the transition
scenarios emerging from the results, and finally § 6 presents the concluding remarks.

2. Governing equations for azimuthally periodic base-flow deviations
A cylindrical coordinate system (r, θ, z) is introduced, where r , θ and z denote

the radial, azimuthal, and axial directions, respectively. The governing equations for
linear disturbances are the linearized Navier–Stokes equations, which are solved for
incompressible flow in non-dimensional form, using the centreline base-flow velocity
W0 (W0 = 2W̄ ) and the pipe radius R as characteristic scales. The axial base-flow
velocity is the sum of the known parabolic profile Wp = 1 − r2 and a non-axisymmetric
deviation which is periodic in θ , independent of z and having an amplitude Wd(r). In
non-dimensional form it is

W (r, θ) = Wp(r) + Wd(r) cos(θ). (2.1)

Linearizing the Navier–Stokes equations around the laminar solution W yields

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0, (2.2a)

∂u

∂t
+ W

∂u

∂z
= −∂p

∂r
+

1

Re

(
∇2u − u

r2
− 2

r2

∂v

∂θ

)
, (2.2b)

∂v

∂t
+ W

∂v

∂z
= −1

r

∂p

∂θ
+

1

Re

(
∇2v − v

r2
+

2

r2

∂u

∂θ

)
, (2.2c)

∂w

∂t
+ W

∂w

∂z
+

(
u

∂

∂r
+

v

r

∂

∂θ

)
W = −∂p

∂z
+

1

Re
∇2w, (2.2d)

where

∇2 =
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
,

u, v and w are the disturbance velocity components in the r-, θ- and z-directions,
respectively, p is the disturbance pressure, and Re =W0R/ν is the Reynolds number
where ν denotes the kinematic viscosity.
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The coefficients in (2.2) depend on r and are periodic in θ . According to Floquet’s
theorem the solution can be written as an infinite series of the form

{u, v, w, p} = ei(αz−ωt)

∞∑
n=−∞

{un(r), vn(r), wn(r), pn(r)}einθ , (2.3)

where α is the streamwise wavenumber and ω is the frequency. Substituting (2.3) into
(2.2) yields the following set of ordinary equations:

(Mn − iωD)an = −L1an−1 − L2an+1, (2.4)

where
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The superscript T denotes the transpose operation and the prime indicates the
derivative with respect to the radial coordinate. The expressions for the two terms on
the right-hand side of (2.4) are

L1,2 =
1

2

⎛
⎜⎜⎝

0 0 0 0

iαWd 0 0 0
0 iαWd 0 0

W ′
d ±(i/r)Wd iαWd 0

⎞
⎟⎟⎠ , (2.6)

where the subscripts 1 and 2 correspond to the plus and minus signs inside the
matrix, respectively. When Wd = 0 the right-hand side of (2.4) is set to zero and the
system is reduced to the eigenvalue problem for pipe Poiseuille flow for a given n,
which then represents the azimuthal wavenumber. When the right-hand side of (2.4)
exists, the eigenvalue problem associated with a given function Wd(r) consists of an
infinite number of coupled sets, corresponding to the terms of the series (2.3). The
boundary conditions on the centreline (r = 0) for each component of the vector an

are (Batchelor & Gill 1962)

un, vn = 0, wn finite for n = 0,

un ± ivn = 0, 2dun/dr ± idvn/dr = 0, wn = 0 for n = ±1,

un, vn, wn = 0 for |n| > 1.

⎫⎬
⎭ (2.7)
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The no-slip and no-penetration conditions on the pipe wall (r = 1) imply un = vn =
wn = 0.

Assuming convergence of the series (2.3) for a finite number of terms (−N � n � N ,
where N is an integer number), the system (2.4) consists of 2N + 1 coupled sets of
equations. However, this system possesses a symmetry property, {un, vn, wn, pn} =
{u−n, −v−n, w−n, p−n}, such that only N + 1 coupled sets have to be considered. We
begin with the solution consisting of |n| � 2. For this case there are three sets of
equations, which for the temporal analysis result in an eigenvalue problem for the
complex frequency ω. In compact notation the resulting sets of equations are

iωDa0 = M0a0 + L0a1, (2.8a)

iωDa1 = M1a1 + L1a0 + L2a2, (2.8b)

iωDa2 = M2a2 + L1a1, (2.8c)

where

L0 =

⎛
⎜⎝

0 0 0 0
iαWd 0 0 0

0 0 0 0
W ′

d −(i/r)Wd iαWd 0

⎞
⎟⎠ . (2.9)

The system (2.8) can be solved for a given azimuthally periodic deviation with
the radial distribution Wd(r). For the case Wd =0 the three sets of equations are
decoupled, and each set yields the known eigenvalue problem of pipe Poiseuille
flow for a different azimuthal wavenumber (n= 0, 1, 2), such that the whole system
generates three sets of eigenvalues, one set for each n. As the magnitude of Wd is
slightly increased above zero, the eigenvalues deviate (from their values associated
with the pure Poiseuille profile) due to the coupling terms. We choose to focus on
eigenvalues associated with n= 1, which for the uncoupled problem (Poiseuille base
flow) yield the least-stable eigenvalue. For this choice the set (2.8b) is the main
eigenvalue system, while the other two sets (2.8a) and (2.8c) affect the solution only
through the deviation Wd . Therefore, it is convenient to substitute the two sets (2.8a)
and (2.8c) into (2.8b) to yield the following single set of equations:

M1a1 = L1M−1
0 L0a1 + L2M−1

2 L1a1, (2.10)

where

Mn ≡ Mn − iωD, (2.11)

and the notation ( )−1 indicates inverse operators.

3. Optimizing azimuthally periodic deviations
In the following the variational technique by Gavarini et al. (2004), who analysed

axisymmetric base-flow deviations, is applied to the case of non-axisymmetric,
azimuthally periodic deviations. Accordingly, a variation δWd in the base-flow profile
is introduced, which results in the corresponding variations δω in the eigenvalue and
δa1 in the eigenfunctions of the system (2.10). The variational system resulting from
(2.8b) is

iδωDa1 = M1δa1 + δL1a0 + δL2a2 + L1δa0 + L2δa2, (3.1)

where the notation δLj (j = 0, 1, 2) corresponds to the matrices in (2.6) and (2.9), with
δWd and δW ′

d replacing Wd and W ′
d , respectively. Similarly, the variational systems
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resulting from (2.8a) and (2.8c) are, respectively,

M0δa0 − iδωDa0 = −δL0a1 − L0δa1, (3.2a)

M2δa2 − iδωDa2 = −δL1a1 − L1δa1. (3.2b)

Substituting (3.2a) and (3.2b) into (3.1) yields the variational system:[
M1 −

(
L1M−1

0 L0 + L2M−1
2 L1

)]
δa1

= iδω
(
D + L1M−1

0 DM−1
0 L0 + L2M−1

2 DM−1
2 L1

)
a1

+
(
δL1M−1

0 L0 + δL2M−1
2 L1 + L1M−1

0 δL0 + L2M−1
2 δL1

)
a1. (3.3)

The left-hand side of (3.3) can be eliminated by taking the inner product with the
adjoint eigenfunction vector b1 = {u1a, v1a, w1a, p1a}T as follows. The inner scalar
product between two vectors a and b is defined as

(a, b) ≡
∫ 1

0

rb†adr =

∫ 1

0

r(u∗
au + v∗

av + w∗
aw + p∗

ap)dr, (3.4)

where the superscripts † and ∗ denote the conjugate transpose and the complex
conjugate, respectively. The adjoint function b1 is defined by the relation:

(La1, b1) = (a1, Lab1), (3.5)

where L ≡ M1 −L1M−1
0 L0 −L2M−1

2 L1 is the differential operator in the system (2.10),
and La denotes its adjoint operator.

By taking the inner product of the system (3.3) with the adjoint eigenfunction b1

we obtain a relation between the variation δWd in the azimuthally periodic base-flow
deviation and the variation in the eigenvalue δω. It should be noted that the resulting
relation depends on the radial distribution of the deviation Wd itself (which appears in
each of the matrices Lj , j =0, 1, 2). For sufficiently small amplitudes of the deviation,
the quadratic terms of Wd are negligible compared to the others, and the system (3.3)
can be reduced to a more compact one:

M1δa1 = iδωDa1 +
(
δL1M−1

0 L0 + δL2M−1
2 L1 + L1M−1

0 δL0 + L2M−1
2 δL1

)
a1. (3.6)

For the reduced system (3.6) the adjoint operator M1a is simply the adjoint of the
linearized Navier–Stokes equations with the pipe Poiseuille base flow and for n= 1.
With this choice for b1 as the eigenfunction of M1ab = 0, the variation δω in the
eigenvalue can be expressed as

δω = i

∫ 1

0

(δWdGWd + WdGδWd)dr

4

∫ 1

0

rb∗
1Da1dr

, (3.7)

where G represents a differential operator, resulting from the last terms on the
right-hand side of (3.6). For numerical purposes this differential operator should
be translated into an algebraic form. The expression for the algebraic form of the
operator G (in terms of differentiation matrices) is presented in appendix A.

Relation (3.7) is now useful for finding the optimal azimuthally periodic deviations
for axisymmetric pipe Poiseuille flow. Similarly to the axisymmetric deviation analysis
by Gavarini et al. (2004), we maximize the disturbances growth rate (imaginary part
of the eigenvalues in this case) by satisfying a constraint on the magnitude of the
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function Wd , expressed by the norm∫ 1

0

rW 2
d dr = ε. (3.8)

In the following the parameter ε is chosen to be small, such that according to (3.8)
the magnitude of Wd is sufficiently small (compared to the centreline velocity of
the pipe Poiseuille flow), and relation (3.7) holds as an approximated result. The
resulting constrained maximization problem can be reduced to an unconstrained one,
by introducing the Lagrange multiplier λ. The functional to be maximized is then

F = ωi − λ

[∫ 1

0

rW 2
d dr − ε

]
, (3.9)

and the necessary condition for optimum is

δF = δωi − 2λ

∫ 1

0

rWdδWddr = 0. (3.10)

Substituting the imaginary part of (3.7) into (3.10) results in the following condition
for optimum:

δωi = 2λ

∫ 1

0

rWdδWddr = Re

⎡
⎢⎢⎣
∫ 1

0

(δWdGWd + WdGδWd)dr

4

∫ 1

0

rb∗
1Da1dr

⎤
⎥⎥⎦ . (3.11)

Relation (3.11) must hold for an arbitrary variation δWd , and thus constitutes the
following eigenvalue problem for the eigenvalue λ:

Re

⎡
⎢⎢⎣ (G + Ga)Wd

4

∫ 1

0

rb∗
1Da1dr

⎤
⎥⎥⎦ − 2λrWd = 0, (3.12)

where Ga is the adjoint operator of G, based on the inner product (u, v) ≡
∫ 1

0
uvdr .

Equation (3.12) is given in term of differentiation matrices, for use in numerical
calculations, in appendix A.

The eigenvalue problem (3.12) can be solved for any combination of Reynolds
numbers (Re) and axial wavenumbers (α), for different eigenvalues ω of the pipe
Poiseuille base flow. The operator G depends on the chosen eigenvalue and the
corresponding eigenfunctions (and adjoint eigenfunctions) of the pipe Poiseuille flow.
The optimal deviation is the eigenfunction Wm corresponding to the largest eigenvalue
λm in (3.12).

As mentioned, for the optimization analysis it is assumed that ε must be sufficiently
small, so that the quadratic terms of Wd in the complete variational system (3.3)
have been neglected. Then an approximate deviation solution (for a chosen Poiseuille
eigenvalue) could be obtained by (3.12). In order to solve the complete nonlinear
system and obtain accurate results, an iterative algorithm is employed. The first
iteration is the solution of the reduced system (3.6), and every subsequent iteration
exploits the deviation Wd of the previous one to refine the solution to the complete
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system (3.3). The algorithm employed for this purpose is

W
j+1
d = W

j
d − Ω

⎡
⎢⎢⎢⎢⎣W

j
d − Wj+1

m√(∫ 1

0

rWj+1
m

2
dr

)/
ε

⎤
⎥⎥⎥⎥⎦ , (3.13)

where the superscript j denotes the iteration number and Ω is a relaxation parameter
(0 <Ω � 1). The function Wm is the eigenfunction corresponding to the largest
eigenvalue of the following equation:

Re

[(
Gj + Gj

a

)
Wj+1

4�j

]
− 2λj+1rWj+1 = 0, (3.14)

where

� ≡
∫ 1

0

rb∗
1

(
D + L0M−1

0 DM−1
0 L1 + L2M−1

2 DM−1
2 L0

)
a1dr, (3.15)

and the operator G is computed by solving the eigenvalues and corresponding
eigenfunctions of the system (2.10). This system is nonlinear with respect to the
eigenvalues ω (the inverse operators on the right-hand side contain the eigenvalues),
and hence a Newton–Raphson iterative method is employed to find the least-unstable
eigenvalues at each step of the iterative procedure for the optimal deviation. The

iterative process given in (3.13) is assumed to converge when the error
∫ 1

0
r(Wj+1

d −
W

j
d )2dr is sufficiently small (∼10−8). The numerical solution of the eigenvalue problem

is obtained by the Chebyshev collocation technique. For a sufficiently accurate solution
of the eigenvalues, 64–80 polynomials have been used.

The operator G in (3.7) represents a measure of the sensitivity of each eigenvalue
ω to variations in Wd . This operator is the analogue measure to the sensitivity
function in the case of axisymmetric deviations, which was introduced by Gavarini
et al. (2004). Different operators G can be produced corresponding to the different
eigenvalues of the pipe Poiseuille flow. Accordingly, different approximated deviations
can be computed with (3.12). However, in the iterative procedure described by (3.13)
these approximated deviations are used only as the initial guesses for the nonlinear
problem. Since G has the role of merely indicating the relative efficiency of different
eigenfunctions (corresponding to different pipe Poiseuille eigenvalues) to produce
a destabilizing base-flow deviation, it is sufficient to consider the diagonal of the
equivalent algebraic operator G as a characterizing norm (G is a differentiation
matrix used in the numerical calculations, see appendix A). Figure 1 shows the
dependence of |diag(G)| on the radial coordinate for the six least-stable modes for
Re = 2000 and α =3.7 (the plots are normalized by the highest peak among the six
modes). The curves in figure 1 (b) (for modes 4 and 6) have higher peaks compared to
the ones in figure 1 (a). Note that the maximum of the curve corresponding to mode 2
is less than half that corresponding to mode 6 in figure 1 (b). Therefore, modes 4
and 6 are the most efficient ones (among the six least-stable modes) to start with, as
initial guesses to the iterative procedure outlined above. Figure 1 may also imply the
approximate location associated with the various deviation solutions. Owing to the
nonlinearity of the problem different modes having similar curves in figure 1 may lead
to the same converged deviation, e.g. taking mode 2, 4 or 5 as an initial guess may
lead to the same solution. The curves corresponding to modes 1 and 3 are located
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Figure 1. Radial distribution of the function |diag(G)| for the six least-stable modes.
Re = 2000 and α = 3.7.

closer to the centreline and might lead to a different solution. However, the curve
corresponding to mode 6 is very different from all the others and implies a possible
solution close to the wall rather than to the pipe centreline.

In general, higher modes, having higher decay rates, may have larger characterizing
norms, i.e. higher peaks in figure 1 (e.g. for the axisymmetric deviations computed
by Gavarini et al. 2004, mode 22 is shown to have the largest characterizing norm).
Thus, higher modes may be more efficient as an initial guess in the iterative process.
However, selecting higher modes, which are more sensitive to base-flow deviations,
for the role of an initial guess, depends on the magnitude of the deviation: for a
sufficiently small base-flow distortion the least-stable modes are always preferable,
since the decay rate of higher modes, although more sensitive to the deviations, does
not decrease markedly to compete with the decay rate decrease of the least-stable
modes. On the other hand, for larger distortions, which are capable of attracting
higher modes to become the most unstable ones, it would be relevant to consider
additional higher modes in figure 1, in order to choose the most efficient initial guess
in the iterative analysis. In the present study relatively small deviations have been
considered, such that the first six least-stable modes have been the most efficient
initial guesses in the iterative procedure.

It should be noted that the optimal base-flow deviations found with the analysis
outlined above do not satisfy the governing Navier–Stokes equations. A weak
dependence of the deviation on the axial coordinate and time must therefore exist
in order to satisfy the viscosity terms of the momentum equations, and is neglected
in the present analysis (see also Bottaro et al. 2003 for similar arguments regarding
two-dimensional deviations in channels flows). Moreover, it is important to mention
in this context that the deviations are not subjected to a constraint on the cross-
section mass flux. Nevertheless, the average velocity difference between the Poiseuille
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parabolic profile and the distorted profile is less than O(10−8) for all Reynolds
numbers considered throughout the analysis.

4. Results
In the following, relevant results for optimal axisymmetric deviations are first

presented in § 4.1, mainly for comparison. The optimal azimuthally periodic deviation
results follow in § 4.2, and § 4.3 presents results of the flow induced by nonlinear
interactions between the unstable waves resulting from the azimuthally periodic
deviations.

4.1. Optimal axisymmetric deviations

As mentioned above, the axisymmetric deviation analysis was first carried out
by Gavarini et al. (2004), who analysed spatial unstable disturbances; additional
conclusions regarding pipe flow stability have been drawn recently by Ben-Dov &
Cohen (2007). The results for this case could be produced with a simpler mathematical
procedure than the azimuthally periodic deviation analysis. Therefore, it is instructive
to explore the results in this case, before proceeding to a careful examination of the
non-axisymmetric deviation results. The mathematical formulation for obtaining the
results in the present subsection can be found in Gavarini et al. (2004) for spatial
instability and in Ben-Dov (2006) for the temporal case.

Ben-Dov & Cohen (2007) have solved the optimal axisymmetric deviations for
different Reynolds numbers (Re) and axial wavenumbers (α), for the azimuthal
wavenumber n= 1. The constraint represented by ε has been computed to yield
neutral stability. For a given deviation the cross-section energy density is defined
as the energy per unit pipe length added to the flow as a result of the additional
deviation:

E =

∫ 2π

0

∫ 1

0

r
[
(Wp + Wd)

2 − W 2
p

]
drdθ = 2π

∫ 1

0

rWd(2Wp + Wd)dr, (4.1)

where Wd denotes the axisymmetric deviation from the pipe Poiseuille profile.
Figure 2 (a) presents the cross-sectional energy density of the optimal deviations,

yielding neutral stability (E =En), as a function of α for four different Reynolds
numbers. For sufficiently low Reynolds numbers (Re < 600) only one optimal
deviation exists. On increasing the Reynolds number slightly above 600 a bifurcation
occurs and two optimal deviation solutions (branches) co-exist (as presented in
the figure for Re � 1200). Generally, as the Reynolds number is further increased the
energy density of the optimal deviation required to trigger instability is decreased, and
additional bifurcations are expected to take place. In the limit of Re → ∞ the deviation
magnitude is considered to be infinitesimal and the accurate deviation is computed
solely by equation (3.12), without the need of the iterative procedure. Therefore, in
this limit of ε → 0 an infinite number of deviation solutions exists, corresponding to
the infinite number of eigenvalues associated with the pipe Poiseuille profile.

Figure 2 (b) presents the optimal deviation radial distributions of the curves in
figure 2 (a), corresponding to the local minima at which α = αmin. The solid lines
correspond to the minima of the lower αmin branch of solutions, whereas the dashed
lines correspond to the minima of the higher αmin branch. As the Reynolds number
is increased it can be seen that for the lower αmin solutions the deviations tend to be
localized next to the pipe wall, whereas for the higher αmin branch the deviations tend
to be located around the centreline.
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Figure 2. (a) Curves of deviation energy density yielding a neutral stability (En) vs. axial
wavenumber (α) for various Reynolds numbers. For Re = 600 only one branch of the optimal
deviation exists, whereas for Re above 600 two branches are presented. (b) The optimal
deviation radial distributions corresponding to the minima of the curves in (a).

In figure 2 (a) it can be noticed that for Reynolds numbers up to approximately
2000 the global minimum energy solution is the one located near the wall, whereas
for values above Re ≈ 2000 the solution located around the centreline becomes the
one having the global minimum energy, and therefore is more likely to trigger an
exponential instability. A more accurate value for this ‘critical’ Reynolds number has
been found by Ben-Dov & Cohen (2007) to be Re = 1840. The subcritical solution
(having the minimum energy below Re = 1840) generates unstable waves which have
about twice the wavelength of the supercritical waves (having the minimum energy
above Re = 1840), and their time scale is approximately 3.5 times longer. These two
characteristics may provide an explanation for the preference of the solution having a
global minimum of energy density above Re =1840 to be the one leading to transition.
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If the deviation persists over a sufficiently long time and spatial extent, compared
to the respective scales of the unstable waves, these waves can grow and initiate
transition. (It should be noted that the length and time scales of the deviation are
assumed in the analysis to be infinite.) We therefore propose to associate this ‘critical’
Reynolds number with known findings, in which transition has been observed only for
Reynolds numbers above approximately 1800 (e.g. see the experiments by Darbyshire
& Mullin 1995 and more recently by Peixinho & Mullin 2006, and the supporting
results of the direct numerical simulations by Willis & Kerswell 2007).

4.2. Optimal azimuthally periodic deviations

The energy density and the corresponding optimal functions Wd have been determined
for various Reynolds numbers and a range of axial wavenumbers. The energy density
associated with the azimuthally periodic deviation is given by

E =

∫ 2π

0

∫ 1

0

r
{
[Wp + Wd cos(θ)]2 − W 2

p

}
drdθ = π

∫ 1

0

rW 2
d dr, (4.2)

where Wd is the radial distribution of the deviation.
We first recall that in the analysis described above, the eigenfunctions series in (2.3)

is truncated and all terms having |n| > 2 are omitted. In order to verify that the higher
terms are indeed negligible and the series is converged with the terms with indices
satisfying |n| � 2, the analysis for solving the eigenvalue problem has been expanded
by including the terms with indices |n| � 3. The expanded equations are given in
appendix B. Note that for small magnitudes of Wd (relative to the Poiseuille profile)
the error in this case is of O(|Wd |4), while for the series including the indices |n| � 2
the error is of O(|Wd |2). Figure 3 presents curves of the optimal deviation energy
density which yields neutral stability of waves (E = En) versus the axial wavenumber
α at four different Reynolds numbers. The solid lines correspond to the series |n| � 2
and the dashed lines correspond to the series |n| � 3. The maximum error (for all
Reynolds numbers) is about 3%. Since the error is sufficiently small the series with
indices |n| � 2 is used in the following.

In figure 4 curves of the optimal deviation energy density versus the axial
wavenumber (α), which trigger a neutral stability, are shown for eight different
Reynolds numbers. For Reynolds numbers below 200 a single solution is found (solid
line). At a Reynolds number slightly above Re = 200 a bifurcation to another solution
appears, and for Re = 250 two different solutions can be seen on figure 4 (a) (the
second branch of solutions is denoted by the dashed line). As the Reynolds number
is further increased the upper branch of solutions bifurcates again at a Reynolds
number slightly above 500 (see figure 4(b)), and another branch is formed (dashed-
dotted line). At Re = 600 three solutions co-exist. In figure 4(c) we can see that on
further increasing the Reynolds number the upper branch tends towards values of
αmin similar to those of the two other branches. However, the energy density difference
between the upper branch (dashed line) and the two others (solid and dashed-dotted
lines) increases, whereas the difference between the lower (solid line) and the middle
(dashed-dotted line) branches decreases.

Figure 5 presents the optimal deviation radial distributions for the minima of the
curves shown in figure 4. The lower αmin branch (solid lines) tends to be localized
near the centreline, whereas the upper αmin branch (dashed lines) tends to be localized
next to the wall. As the Reynolds number is increased the lower and upper αmin

deviations tend to move further towards the centreline and the wall, respectively. The
dashed-dotted line, corresponding to the middle αmin branch, is located closer to the
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Figure 3. Curves of deviation energy density yielding a neutral stability (En) vs. axial
wavenumber (α) for various Reynolds numbers; solid lines correspond to solutions including
|n| � 2 terms and dashed lines to more accurate solutions including |n| � 3 terms.

centreline as the Reynolds number is increased, and therefore is more similar to the
lower branch, denoted by the solid line. It is clear from figures 4 and 5 that for
each branch of solution (among the three presented), when the deviations occupy
a circular region closer to the centreline their minimum energy is lower than those
occupying an annulus closer to the pipe wall. This result is due to the cylindrical
geometry, for which the energy density associated with a radial width occupied by a
certain deviation (required to trigger an inflectional instability) is lower for a deviation
located within an annular cross-section closer to the centreline than for a deviation
closer to the wall.

A comparison between the azimuthally periodic deviation solutions presented in
figure 4 and the axisymmetric ones shown in figure 2, having the same Reynolds
number, indicates that the energy density required for the optimal azimuthally periodic
deviations to trigger an exponential instability is almost twice the energy required in
the axisymmetric case. Unlike the axisymmetric deviation, the azimuthally periodic
deviation energy density in (4.2) is independent of the Poiseuille base flow. Note that
for axisymmetric deviations the energy density given by (4.1) includes an additional
contribution (having a negative sign) representing the energy transferred to the
deviation from the Poiseuille base flow. Thus, unlike the axisymmetric deviations, in
the case of azimuthally periodic deviations energy is not transferred from the base
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Figure 4. Curves of deviation energy density yielding a neutral stability (En) vs. axial
wavenumber (α) for various Reynolds numbers. For Re � 200 only one branch of the
optimal deviation exists (denoted by the solid line), for 250 � Re � 500 two branches are
presented (the second bifurcated solution is denoted by the dashed line), and for Re � 600
three branches are presented (the third bifurcated branch is denoted by the dashed-dotted
line).

flow to reduce the deviation amplitude. This difference also exists for all deviations
having higher azimuthal periodicity.

Figure 6 presents the deviation velocity in the cross-sectional plane for the centreline
and near-wall deviation radial distributions presented in figure 5 at Re = 2000
(denoted by solid and dashed lines, respectively). The deviation velocity is indicated
by a grey scale, where light and dark are for higher and lower velocities, respectively.
The velocity is normalized by the maximum deviation velocity. For both deviations,
localized regions of low and high speeds next to the centreline (in figure 6a) or next
to the wall (in figure 6b) can be noticed. These structures have a strong resemblance
to streaks, often observed next to the wall during transition in wall-bounded shear
flows (e.g., see Elofsson & Alfredsson 1998).

In figure 7(a) the relation between the minimum energy density and the Reynolds
number for the lower αmin branch is shown. The corresponding relation between
min(En) and its associated axial wavenumber αmin is shown in figure 7(b). The scaling
of the minimum deviation amplitude (square root of the minimum energy density)
with the Reynolds number is O(Re−1). This result is identical to the scaling of the
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axisymmetric deviations (shown in figure 15 in Gavarini et al. 2004), and has been
observed in experiments by Hof et al. (2003). It should be noted that the same scaling
and a very similar behaviour of the relation between the minimum energy density
and αmin (in figure 7b) have been shown by Bottaro et al. (2003) to hold for plane
Couette flow.

Figure 8 presents the cross-sectional distribution of the exponential modes velocity
field for two Reynolds numbers (Re = 800 and Re = 2000). The left-hand plots
correspond to the lower αmin solution (figures 8a and 8c), whereas the right-hand ones
correspond to the higher αmin solution (figures 8b and 8d). The velocity components
in the, (r, θ)-plane are indicated by arrows and the axial velocity is indicated by the
grey scale, where light or dark signifies velocities higher or lower than the base flow,
respectively. The figure is plotted for an arbitrary pipe cross-section (for a certain
phase αz − ωt). In the left-hand plots a pattern of two counter-rotating vortices next
to the centreline can be noticed. The right-hand plots show that the deviations next
to the wall induce a region of concentrated vorticity along a section of the wall. For
the lower Reynolds number (Re = 800) the low- and high-speed regions are distant
from the wall, whereas for the higher Reynolds number (Re = 2000), which is more
characteristic of a transition scenario, they are attached to the pipe wall. These regions
represent travelling waves along the wall. The two studies by Wedin & Kerswell (2004)
and by Faisst & Eckhardt (2003) present similar travelling wave patterns for higher
orders of symmetries. The wave patterns in these cases, however, represent nonlinear
wave solutions of the governing equations, and it is believed that these symmetrical
patterns could be obtained as a result of the growth of waves triggered by azimuthally
periodic deviations of higher orders, i.e. for m > 1, where the deviation is then given
by Wd(r) cos(mθ) (the present work is restricted to m = 1).

4.3. Nonlinear interactions of unstable waves

The linear instability of the azimuthally periodic distorted base flow yields exponen-
tially growing waves which may interact through the nonlinear terms of the Navier–
Stokes equations, and consequently induce a modified, azimuthally dependent mean
flow in the cross-sectional plane. This process has been demonstrated theoretically
and experimentally by Cohen & Wygnanski (1987) for an axisymmetric jet flow
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Figure 8. The exponential-modes velocity field for (a,b) Re =800 and (c,d) Re = 2000. The
left-hand plots (a,c) correspond to the lower αmin solution (αmin =2.7 for Re =800, αmin = 3.7
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for Re = 800, αmin = 4.3 for Re = 2000). Cross-sectional velocity is indicated by arrows and axial
velocity by a grey scale, where light and dark are for higher and lower velocities, respectively.

resulting from the nonlinear interaction between two azimuthal waves. Waleffe (1995,
1997) presented a similar analysis as part of a self-sustaining process in wall-bounded
flows, and Wedin & Kerswell (2004) applied this analysis to pipe flow.

The equations governing the flow induced by forcing unstable waves are derived as
follows. The total flow {u + U, v + V, w + W, p + P }, where {u, v, w, p} denotes the
unstable wave velocity and pressure and {U, V, W, P } denotes the induced mean flow
field, is substituted into the Navier–Stokes equations. Then the equations are averaged
over the axial direction and over time, and the nonlinear terms associated with the
induced flow are neglected by assuming they are of a small order of magnitude. The
resulting set of equations is then

∂(rU )

∂r
+

∂V

∂θ
= 0, (4.3a)
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Figure 9. Velocity field as a result of nonlinear interactions between the unstable waves (at
Re = 2000) for (a) the near-centreline deviation (α = 3.7) and for (b) the near-wall deviation
(α = 4.3). Cross-sectional velocity is indicated by arrows and axial velocity by a grey scale,
where light and dark are for higher and lower velocities, respectively.

where

∇2
⊥ =

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2
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and the brackets 〈 〉 denote an average in the axial direction z and in time t . On the
right-hand side of (4.3) u, v and w stand for the velocities associated with the most
unstable mode only. Since the converged solutions for the unstable waves are given
by the series (2.3) for |n| � 2, the solution to the set (4.3) may be expressed by the
series

{U, V, W, P } =

4∑
n=−4

{Un(r), Vn(r), Wn(r), Pn(r)}einθ . (4.4)

Substituting (4.4) into the left-hand side of (4.3), together with an unstable wave
solution into the forcing terms on the right-hand side, provides a system of four
ordinary equations. Note that the subset (4.3a)–(4.3c) for the cross-sectional velocity
and the single equation (4.3d) for the axial velocity are solved independently of each
other. The cross-sectional velocity equations have been solved by Wedin & Kerswell
(2004) for self-interacting travelling wave solutions. Their analysis showed an efficient
nonlinear feedback to streamwise rolls structures similar to the ones initially leading
to the travelling waves.

Figure 9 presents the solution of the set (4.3a)–(4.3c) for the cross-sectional velocity
components U and V (indicated by the arrows), and of equation (4.3d) for the axial
velocity W (indicted by the grey scale). In figure 9(a) the induced flow is a result of
forcing terms consisting of the near-centreline deviation at Re = 2000 (the minimum
energy deviation for α = 3.7), whereas figure 9(b) is the induced flow resulting from
the near-wall deviation at the same Reynolds number (where the minimum energy
deviation is for α = 4.3). The axial velocity in the figures is normalized by the average
of the cross-sectional velocity magnitude. Thus, it can be seen that the maximum
(absolute) axial velocity in figure 9(a) is slightly less than the average magnitude of
the cross-sectional velocity. The average magnitude of the axial velocity in this figure
is 0.07 of the average magnitude of the cross-sectional velocity. This ratio signifies the
modulation of the axial velocity deviation to an almost pure cross-sectional velocity
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field (through nonlinear self-interactions of the travelling waves resulting from the
deviation). This result is consistent with the feedback scenario suggested by Waleffe
(1995, 1997) and demonstrated by Wedin & Kerswell (2004) in pipe flow. Figure 9(b)
shows a less efficient feedback mechanism. In this case the ratio between the average
magnitudes of the axial velocity and the cross-sectional velocity is 0.3.

The cross-sectional flow field in figures 9(a) and 9(b) consists of streamwise rolls. In
figure 9(a) four rolls can be seen, whereas in figure 9(b) six rolls can be seen around
the centreline, although they seem to be weaker than the ones in figure 9(a). The roll
structure in both figures implies that the deviations, which may be formed initially by
pairs of streamwise rolls, may lead to higher symmetries of streamwise rolls. Similar
cross-sectional symmetries have been presented by Faisst & Eckhardt (2003) and by
Wedin & Kerswell (2004) for travelling wave solutions. These coherent structures
are discussed widely in the review papers by Kerswell (2005) and by Eckhardt et al.
(2007). A very similar pattern of counter-rotating vortices and high-speed streaks has
also been shown numerically by Schneider, Eckhardt & Yorke (2007) to appear when
pipe flow transition is triggered by sufficiently large perturbations.

5. Discussion
The results in the present study demonstrate that very small finite-amplitude three-

dimensional deviations from the developed base flow in a pipe render instability.
For an azimuthally periodic velocity deviation leading to instability, the minimal
magnitude of the deviation has been found to be approximately 20/Re (see figure 7a).
Although the finite-amplitude deviations are small in magnitude, compared to the
pipe Poiseuille base flow, the problem is highly nonlinear and, owing to bifurcations of
the optimal deviation solutions, multiple solutions of azimuthally periodic deviations
are found.

The first appearance of multiple deviation solutions occurs at Reynolds numbers as
low as 200 (see figure 4), and as the Reynolds number is increased more solutions can
be traced by finding more bifurcation points. The question then is, physically what
would be the minimal Reynolds number for which such deviations may be formed
in the flow and trigger instability, and thus have a role in a transition scenario. It
is not obvious that the deviation solutions found through the optimization analysis
can actually be formed in the flow. In order for such deviations to act two conditions
must be fulfilled: first there must be some external forcing, which supplies the energy
required to form the deviation; secondly, the deviations must persist for a sufficiently
long axial distance and time compared to the characteristic length and time scales of
the growing unstable waves which are triggered by them.

These two conditions are not independent of each other, since the mechanism
leading to the formations of such deviations also determines the length and time
scales of their persistence in the flow. In any case, the probability of an optimized
unstable finite deviation existing in the flow increases as the Reynolds number is
increased, since the energy required to create the deviation decreases. Moreover, as the
Reynolds number is increased towards ≈ 2000 the optimal deviation becomes more
localized in the radial direction (see figure 5), signifying a more likely consequence
of localized disturbances which are typical in bounded flows (e.g.wall roughness). In
general, one can think of two optional scenarios for the creation of finite-amplitude
deviations in the flow: they can be a consequence of large persistent forcing which
forms them directly, or they can be produced by a transient growth amplification of
smaller initial disturbances, due to the non-normality of the Navier–Stokes operator
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(see Biau & Bottaro 2004 for a detailed discussion on these two scenarios in bounded
shear flows).

The first scenario of deviation formation is more likely to produce axisymmetric
deviations, since this requires less energy (almost 50%) than the azimuthally periodic
ones. This is because, unlike the axisymmetric deviation, the azimuthally periodic
deviation energy density, represented by (4.2), is independent of the Poiseuille base
flow. For axisymmetric deviations the energy density, given by (4.1), includes an
additional negative contribution, representing the energy transferred to the deviation
from the Poiseuille base flow.

The second scenario, which has been the basic motivation for considering non-
axisymmetric deviations in the present work, is the formation of an azimuthally
periodic deviation from an initial disturbance by a transient growth amplification,
a mechanism which is related to the non-normality of the governing equations.
Accordingly, as the Reynolds number is increased, larger amplification of certain
kinds of initial disturbances is produced. The type of initial disturbances experiencing
the most significant transient growth is characterized by a crossflow velocity. Such an
initial velocity yields an amplified (non-axisymmetric) streamwise velocity, a pattern
which is often termed ‘streaks’. Among all azimuthally periodic initial disturbances
the most amplified ones are known to have a periodicity of the form cos(θ) (e.g. see
Bergström 1993 and Schmid & Henningson 1994). The transient growth amplification
is characterized by a relatively long length and time scales compared to the resulting
unstable growing waves; the length scale of the transient growth amplification of
an initial disturbance is of O(1/ε), where ε denotes the magnitude of the initial
disturbance. Therefore, for ε much smaller in magnitude than O(1) the characteristic
length scale of the transient amplification is much larger than O(1), whereas the
length scale of the resulting unstable waves, according to figure 7(b), is 2π/α ∼ O(1).
Since the deviations are of the magnitude of approximately 20/Re, and the initial
disturbance leading to them is assumed to be even smaller, the length scale of the
transient amplification leading to the deviation is much larger than O(1 ). The same
estimation holds for the time-scale difference between the transient amplification
leading to the deviations and the resulting unstable waves. Hence, the mechanism of
the transient growth amplification which leads to azimuthally periodic deviations may
compete with the mechanism shown for the lower energy axisymmetric deviations
(which has been recently suggested by Ben-Dov & Cohen 2007 to explain transition
at Re ≈ 2000).

Finding an approximated initial disturbance flow field, which may lead to
azimuthally periodic deviations, is possible in the case in which the transient
evolution of this initial disturbance is mainly governed by inertial effects and viscosity
is negligible (otherwise the initial value problem expressed by the Navier–Stokes
operator is ill-posed). The initial disturbances in such cases are known to have a
structure of streamwise rolls in the pipe cross-sectional plane. Optimal deviations,
however, which are localized in the cross-sectional plane, have high velocity gradients.
Therefore, the diffusion of momentum (through viscosity) of any kind of small initial
disturbance is crucial during the transient amplification towards the formation of a
non-axisymmetric deviation. Thus, finding an initial disturbance, leading to an optimal
deviation, is a difficult task which was not attempted within the scope of this paper.

The unstable waves, emerging from the base flow distorted by the optimal
azimuthally periodic deviations, may self-interact and induce a flow field in the
pipe cross-section which is independent of the axial direction and time. The solutions
of the flow induced by these self-interactions show that most of the energy associated
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with the axial velocity is likely to be modulated to a cross-sectional velocity field.
This modulation appears to be stronger for optimal deviations around the centreline.
As mentioned above, the azimuthally periodic deviations may be a result of an initial
cross-sectional velocity field, and therefore a modulation of the axial velocity devi-
ations back to a cross-sectional velocity field implies a possible feedback mechanism,
as part of a self-sustaining process which has been suggested by Waleffe (1995, 1997)
and demonstrated by Wedin & Kerswell (2004) in pipe flow. The cross-sectional flow
induced by the nonlinear unstable wave interactions consists of streamwise rolls having
high circumferential symmetries, which may lead to deviations consisting of higher
azimuthal modes. The experiments by Eliahou et al. (1998), in which they introduced
into a developed pipe flow different periodic disturbances, showed that transition
occurred most efficiently (i.e. required the smallest external disturbance amplitudes)
for azimuthally periodic distortions of the base flow. The distortions with m = 2, where
m denotes the azimuthal periodicity of the deviation (excited by n= ±1 modes), lead to
transition with relatively small disturbance amplitudes. However, the distortions con-
sisting of the azimuthal periodicity m = 4 (excited by n= ±2 modes) were seen to be
the most efficient leading to transition. Further supporting evidence for the significance
of azimuthally periodic distortions having higher m-periodicity is the travelling wave
structures found independently by Faisst & Eckhardt (2003) and Wedin & Kerswell
(2004). These structures have also been observed experimentally and computationally
by Hof et al. (2004).

The results for the nonlinear self-interactions of the unstable waves, which showed
the formation of highly symmetrical streamwise rolls, the travelling wave solutions
found by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004), and the above-
mentioned experimental result by Eliahou et al. (1998), imply that an analysis for
higher azimuthal periodicity deviations (especially for m = 2 or m = 4) may be
valuable. The method derived in this study is the basis for such future work and
a similar derivation to optimal oblique deviations in channel flows may also be based
on the present method.

6. Concluding remarks
In this study we have derived a method for finding optimal azimuthally periodic

deviations which render a pipe flow unstable. The minimal magnitude of an
azimuthally periodic velocity deviation (proportional to cos(θ)), which triggers
instability, is approximately 20/Re. Thus, it is evident that very low-energy-density
streak-like structures, which are linearly unstable, may exist in the flow. The energy
density required for such streaks to become unstable has been found to be, however,
larger than that required for axisymmetric deviations to destabilize the flow (almost
double). Nevertheless, azimuthally periodic and axisymmetric deviations may be two
different paths to transition.

At high Reynolds numbers (Re ∼ 103) multiple deviation solutions exist. They have
a localized structure, and occupy less than a half of the pipe cross-section. When
the deviation is closer to the centreline a lower energy is required in order to trigger
instability (due to a more efficient inflectional instability).

The nonlinear self-interactions between the growing waves, resulting from the
distorted base flow, lead to a modulation of the axial flow in a cross-sectional velocity
field. Since the deviations may be a result of an initial cross-sectional velocity, a
possible feedback mechanism is implied, as part of a self-sustaining process.
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Appendix A. Differential operators in terms of differentiation matrices
The analysis in § 2 and § 3 involves inverse differential operators, which cannot be

expressed analytically. However, it is possible to deal with them in algebraic form,
i.e. by discretizing the differential operators which are then represented by approxi-
mated matrices. Then expressing an inverse operator simply requires inverting its
corresponding approximated matrix. In the spectral collocation techniques differential
operators are represented by approximated differentiation matrices.

Expressing the differential eigenvalue problem (3.12) in terms of matrices gives

Re

⎛
⎜⎜⎝ G + GT

4

∫ 1

0

rb∗
1Da1dr

⎞
⎟⎟⎠ − 2λr = 0, (A 1)

where G denotes a differentiation matrix, representing the differential operator G.
The notation r in the second term on the left-hand side of (A 1) denotes a diagonal
matrix with the elements of the discretized radial coordinate r . Note that Re(G + GT )
is a symmetric matrix and r is a symmetric positive definite matrix, and therefore the
eigenvalues and eigenvectors of (A 1) are necessarily real.

The operator G in (3.7) is constructed by taking the inner product, according to
(3.4), of the terms inside the brackets on the right-hand side of (3.6). For convenience
we denote the inverse operators M−1

0 and M−1
2 by the 4 × 4 matrices A = {Aij }

and B = {Bij }, respectively, where each element represents a differentiation matrix.
After matrix multiplications and integration by parts of the terms W ′

d and δW ′
d , the

following matrix G is obtained for the operator G:

G = iαrv∗
1a{iα(2A12 +B12)u1 +(2A14 +B14)(u1∂ +iαw1)+i[αB13 +(B14 −2A14)r−1]v1}

+ iαrw∗
1a{iα(2A22 +B22)u1 +(2A24 +B24)(u1∂ +iαw1)+i[αB23 +(B24 −2A24)r−1]v1}

+ p∗
1a{α[(B22 −2A22)−αr(2A32 +B32)]u1 +i[(2A24 −B24)+αr(2A34 +B34)](u1∂

+ iαw1)+[(2A24 +B24)r−1 +αr(2A34 −B34)r−1 −α(αrB33 −B23)]v1}
− ∂ r p∗

1a{iα(2A12 +B12)u1 +(2A14 +B14)(u1∂ +iαw1)+i[αB13 +(B14 −A14)r−1]v1},
(A 2)

where the elements {u1, v1, w1, p1} and {u∗
1a, v

∗
1a, w

∗
1a, p∗

1a} and the notation r and
r−1 denotes diagonal matrices with the discretized functions on the diagonal, and ∂

represents the differentiation matrix of the first order.

Appendix B. Optimization for the eigenfunction truncated series with indices
|n| � 3

A more accurate solution for the optimal azimuthally periodic deviations requires
an additional coupled set of equations to the sets given in (2.8), such that the series
(2.3) is truncated after |n| =3. The sets to be solved are then

iωDa0 = M0a0 + L0a1, iωDa1 = M1a1 + L1a0 + L2a2, (B 1a, b)
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iωDa2 = M2a2 + L1a1 + L2a3, iωDa3 = M3a3 + L1a2, (B 1c, d)

where the matrices L1, L2 and L0 are given by (2.6) and (2.9), respectively. Substituting
(B 1d) into (B 1c) yields a differential relation between a2 and a1, which then can be
substituted together with (B 1a) into (B 1b) to yield a similar equation to (2.10):

M1a1 = L1M−1
0 L0a1 + L2L−1

2 L1a1, (B 2)

with the modified operator

L2 = M2 − L2M−1
3 L1, (B 3)

where M2 and M3 are given by the definition (2.11).
Equation (B 2) can be used to obtain more accurate eigenmodes for the flow profile

which is modified by the optimal deviations computed in § 4.
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